FOSTER Summer Placement - Cryogenics Interface Testing

Tokamak Energy Ltd.
Oxford
4 days ago
Create job alert

The FOSTER programme's enhanced internship scheme provides students an opportunity to gain work experience within the growing UK fusion industry. The FOSTER programme is looking to build the talent pipeline into the industry. Over the past three years, 83 students have participated in placements in 20 host organisations around the UK, with many receiving offers of employment after their graduation.

Tokamak Energy is fully committed to building talent within the fusion industry and is excited to offer internship opportunities across our business. The placement will give you valuable experience working within a commercial fusion company alongside talented experts within the field, building both your technical and business knowledge.

Placements at Tokamak Energy also give students the opportunity to regularly collaborate not only with our employees but crucially with other members of your cohort. We recognise the value of creating a supportive learning environment to enable you to explore the subjects and skills that you are passionate about. This is your chance to dive into the world of Fusion Energy and help shape the future of sustainable energy!

This role would sit within TE Magnetics, which is TE’s commercial HTS business division. HTS magnet systems commonly have a requirement to make an interface that is thermally conductive but electrically resistive between the current leads and the cryocooler. There is an opportunity to improve how we make these joints. We have a test rig in the lab for measuring interface samples for thermal conductivity data and ideas of how we could make better joints. We would be looking for a student to learn how to use the test rig, test a number of samples, and document their learning.

In this role, you will:

  • Work in a mixed team of engineers, physicists, designers, and technicians.
  • Learn how to operate our bespoke cryocooler cooled test rig.
  • Use the test rig to test several interface samples at cryogenic temperatures.
  • Collate the data into an accessible data store.
  • Conduct literature searches.
  • Communicate the learning in a written report.
  • Make recommendations on further work required (if any).
  • Contribute where appropriate to related lab work.

Minimum Requirements:

  • Studying an Engineering or Physics Degree or Masters.
  • Ideally some knowledge of thermal transfer and electric circuits.
  • Motivated and enthusiastic with the ability to work independently.
  • Good communication skills with the ability to work collaboratively with team members.
  • Good planning and organisation skills.
  • Decision-making, problem-solving, planning, and organising.
  • Analysis and research.

Additional Information:

  • 6 days holiday (plus bank holidays).
  • The placement has a maximum duration of 10 weeks.
  • The salary is £23,809 per annum, pro-rated and paid monthly.
  • Visa sponsorships are available.
  • Accommodation cover isn't offered for the student placements.
  • This is a fantastic opportunity to get a closer look at what we do, the work environment, and the exciting roles we have available.

#J-18808-Ljbffr

Related Jobs

View all jobs

FOSTER Summer Placement - Cryogenics Interface Testing

Procurement Manager

Maths Teacher(Long Term Supply) - Oxfordshire, UK

Director of Channel and Distribution Sales, Europe

Research Scientist—Responsible Technologies Intern: 2025

ISIS Neutron and Muon Source Director, STFC

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Influential Quantum Computing Pioneers to Follow on LinkedIn

Quantum computing now stands at the confluence of scientific curiosity, commercial innovation, and societal impact. What once seemed confined to abstract physics lectures has emerged as a tangible, revolutionary technology attracting multi-billion-pound investments worldwide. Whether it’s accelerating drug discovery, transforming financial modelling, or bolstering secure communications, quantum computing has the potential to redefine numerous industries. Amid this growth, LinkedIn has evolved into a crucial hub for connecting with the individuals driving quantum developments. These pioneers share insights on cutting-edge research, emerging trends, and career opportunities, making it easier than ever to keep up with the field’s rapid evolution. Below, you’ll find 10 influential figures whose LinkedIn activity provides a front-row seat to the quantum revolution. Follow them to stay informed about breakthroughs, funding announcements, and best practices in quantum research and commercialisation.

Navigating Quantum Computing Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Quantum computing has rapidly progressed from a theoretical concept to a promising technology poised to transform fields as varied as cryptography, drug discovery, finance, and logistics. Bolstered by significant investment and national strategies, the UK is emerging as a major hub for research and innovation in this domain. As a result, quantum computing career fairs have begun to pop up, providing opportunities for aspiring quantum software developers, hardware engineers, theoretical physicists, and more to meet and impress potential employers. Whether you’re a quantum computing PhD candidate ready to transition into industry, a software engineer pivoting into quantum algorithm design, or an experimental physicist with a passion for superconducting circuits, these fairs can help you connect with companies and research institutions at the cutting edge of the quantum revolution. This article details the steps you need to take to stand out—covering essential preparation, crafting the perfect pitch, asking smart questions, and following up to strengthen relationships. If you want to harness the power of quantum computing to shape the future, read on.

Common Pitfalls Quantum Computing Job Seekers Face and How to Avoid Them

Quantum computing stands at the cutting edge of technology, promising revolutionary breakthroughs in cryptography, drug discovery, optimisation, artificial intelligence, and beyond. Organisations worldwide are pouring investment into quantum research, creating new opportunities for physicists, computer scientists, mathematicians, engineers, and software developers who have the skills to harness quantum phenomena. The UK, in particular, is home to a burgeoning quantum ecosystem, with university labs, start-ups, and large tech companies all vying for talent. However, entering this high-stakes field is no small feat. Quantum computing employers set a high bar in both technical proficiency and problem-solving capabilities. Many qualified candidates inadvertently stumble on common mistakes that weaken their applications or interview performances. This article delves into the most frequent pitfalls faced by quantum computing job seekers—and offers practical guidance on how to avoid them. If you’re seeking roles in the UK’s quantum computing sector, be it hardware engineering, quantum software development, algorithm research, or quantum cryptography, don’t forget to visit Quantum Computing Jobs for openings tailored to your aspirations. By avoiding these pitfalls, you’ll give yourself the best chance of standing out and contributing to a field that could shape the future of technology itself.