FOSTER Summer Placement - Cryogenics Interface Testing

Tokamak Energy Ltd.
Oxford
10 months ago
Applications closed

Related Jobs

View all jobs

Team Lead, Electronics for Quantum Computing (Equity)

Photonics Design & Simulation Engineer

Photonics Experimental & Fabrication Engineer

Head of Engineering (Photonics & Scale-up Focus)

Research Engineer, Cryogenics

Research Engineer, Cryogenics

The FOSTER programme's enhanced internship scheme provides students an opportunity to gain work experience within the growing UK fusion industry. The FOSTER programme is looking to build the talent pipeline into the industry. Over the past three years, 83 students have participated in placements in 20 host organisations around the UK, with many receiving offers of employment after their graduation.

Tokamak Energy is fully committed to building talent within the fusion industry and is excited to offer internship opportunities across our business. The placement will give you valuable experience working within a commercial fusion company alongside talented experts within the field, building both your technical and business knowledge.

Placements at Tokamak Energy also give students the opportunity to regularly collaborate not only with our employees but crucially with other members of your cohort. We recognise the value of creating a supportive learning environment to enable you to explore the subjects and skills that you are passionate about. This is your chance to dive into the world of Fusion Energy and help shape the future of sustainable energy!

This role would sit within TE Magnetics, which is TE’s commercial HTS business division. HTS magnet systems commonly have a requirement to make an interface that is thermally conductive but electrically resistive between the current leads and the cryocooler. There is an opportunity to improve how we make these joints. We have a test rig in the lab for measuring interface samples for thermal conductivity data and ideas of how we could make better joints. We would be looking for a student to learn how to use the test rig, test a number of samples, and document their learning.

In this role, you will:

  • Work in a mixed team of engineers, physicists, designers, and technicians.
  • Learn how to operate our bespoke cryocooler cooled test rig.
  • Use the test rig to test several interface samples at cryogenic temperatures.
  • Collate the data into an accessible data store.
  • Conduct literature searches.
  • Communicate the learning in a written report.
  • Make recommendations on further work required (if any).
  • Contribute where appropriate to related lab work.

Minimum Requirements:

  • Studying an Engineering or Physics Degree or Masters.
  • Ideally some knowledge of thermal transfer and electric circuits.
  • Motivated and enthusiastic with the ability to work independently.
  • Good communication skills with the ability to work collaboratively with team members.
  • Good planning and organisation skills.
  • Decision-making, problem-solving, planning, and organising.
  • Analysis and research.

Additional Information:

  • 6 days holiday (plus bank holidays).
  • The placement has a maximum duration of 10 weeks.
  • The salary is £23,809 per annum, pro-rated and paid monthly.
  • Visa sponsorships are available.
  • Accommodation cover isn't offered for the student placements.
  • This is a fantastic opportunity to get a closer look at what we do, the work environment, and the exciting roles we have available.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Quantum Computing Job Applications (UK Guide)

Quantum computing is one of the fastest-evolving fields in technology, blending physics, mathematics, computer science and engineering. Roles in this space — from Quantum Algorithm Developer and Quantum Software Engineer to Quantum Research Scientist and Quantum Hardware Specialist — are highly sought after, and hiring managers are exceptionally selective. Because quantum computing is complex and multidisciplinary, recruiters and hiring managers look for clear, concrete evidence of relevant expertise and impact right at the start of your application. They often decide whether to read your CV in detail within the first 10–20 seconds, based on a handful of high-value signals. This guide breaks down exactly what hiring managers look for first in quantum computing applications, how they assess CVs and portfolios, and what you can do to optimise your application to get noticed in the UK quantum job market.

Riverlane Jobs in Quantum Computing: UK Guide for Job Seekers (2026)

If you’re looking for Riverlane jobs in quantum computing, you’re aiming at one of the most important layers in the quantum stack: quantum error correction (QEC). In simple terms, Riverlane focuses on the software, methods & tooling that help quantum computers produce reliable results despite noise. That matters because as quantum hardware scales, the ability to correct errors becomes the difference between “interesting experiments” and “useful quantum computing”. This guide is written for UK job seekers who want to understand: what Riverlane does (in job-seeker language) the roles they hire for the skills that map best to their work how to tailor your CV & LinkedIn how to prepare for interviews how to find & land Riverlane vacancies in the UK You do not need to be a quantum PhD to have a realistic pathway in. But you do need to understand the problem they’re solving & position your experience around it.

The Skills Gap in Quantum Computing Jobs: What Universities Aren’t Teaching

Quantum computing stands at the frontier of technological innovation. Promising breakthroughs in areas as diverse as cryptography, materials discovery, optimisation and machine learning, quantum technologies are shifting from academic research to early commercial deployment. Governments, defence organisations, finance firms and tech innovators around the world — including in the UK — are investing heavily in quantum talent and capability. Yet despite this surge in interest and investment, employers consistently report a troubling trend: Many graduates with quantum computing qualifications are not prepared for real-world quantum computing jobs. This isn’t a reflection on students’ intelligence or effort. Rather, it reveals a persistent skills gap between what universities teach and what organisations actually need. In this article, we’ll explore that gap in depth — what universities do well, where programmes fall short, why the divide persists, what employers actually want, and how jobseekers can bridge that gap to build successful careers in quantum computing.