Research Associate in Spectroscopically Guided Semi-Autonomous Surgical Robotics

Imperial College London
London
5 months ago
Applications closed

Related Jobs

View all jobs

Research Associate in Photonic and Quantum Technology

Research Associate in Superconducting Power Devices for Electric Aircraft

Associate Quantum Engineer

Associate Quantum Engineer

UNPAID VOLUNTEER - Principal Technology Officer (PTO) - Quantum Computing

Quantum Hardware Lead, On-Premises Installation - 153

We are seeking two talented and motivated Research Associates to join a groundbreaking project funded by Cancer Research UK and the Engineering & Physical Sciences Research Council (EPSRC). This project, titled Cancer Surgery at Systems Medicine Level, is at the forefront of combining real-time molecular mapping and robotic-assisted surgery to enable the precise resection of solid tumours. This project aims to enhance precision in tumour resection by integrating cutting-edge, spectroscopically guided feedback systems into semi-autonomous surgical robots.

Roles will focus on developing and fabricating advanced multimaterial fibres integrating surgical laser delivery with robotics. Fibre robots will steer photonic bandgap (PBG) fibres to enable controlled tissue ablation and real-time molecular analysis through the iKnife system. You will play a key role in implementing spectroscopic techniques to provide real-time feedback and ensure precise tissue differentiation, contributing to the development of a system capable of large-area diagnostic mapping and targeted tissue resection. Successful candidates will also optimise control algorithms, integrate sensors, and refine advanced fabrication techniques to ensure the system's efficiency in complex surgical environments. You will be joining a multidisciplinary team bridging cancer research, surgical robotics, and advanced fibre and control technologies, working in an environment dedicated to pioneering clinical applications.


In this role,you will:

Lead the design, fabrication, and integration of multimaterial surgical laser and robotic fibres to build medical robotic systems. Develop control systems, simulations, and real-time feedback mechanisms for precise tumour resection and tissue mapping, ensuring seamless integration of spectroscopic techniques. Collaborate with engineers, cancer biologists, and clinicians to refine the design and methodology for integrating advanced robotic fibre systems with spectroscopic guidance during surgery. Conduct experimental validation of fibre systems and feedback control in pre-clinical and clinical environments. Publish your findings in top-tier journals and present your work at international conferences.


A PhD (or equivalent) in Mechatronics Engineering, Robotics, Biomedical Engineering, Intelligent Systems Engineering, Bioengineering or a related field.Strong experience in control system design and advanced fabrication techniques, including optical fibre fabrication, thermal drawing, and clean room protocols.Hands-on expertise with multimaterial fibre technologies and a solid background in experimental setups and system integration within biomedical or engineering contexts.Strong interest in integrating spectroscopic techniques, particularly in biomedical or clinical settings, with a willingness to develop expertise in this area.Deep knowledge of robotics systems, particularly those related to medical devices.Strong programming skills in Python, MATLAB, or C++ for developing real-time algorithms and performing data analysis.The ability to work both independently and as part of a multidisciplinary team.
The opportunity to work on a high-impact project funded by prestigious organisations like Cancer Research UK and EPSRC.Access to world-class research facilities at Imperial College London.The chance to collaborate with leading experts in cancer research and surgical robotics.Hybrid working options to support work-life balance.The opportunity to continue your career at a world-leading institutionSector-leading salary and remuneration package (including 39 days off a year)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum Computing Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Quantum computing is at the forefront of disruptive innovation, promising exponential speed‑ups for certain classes of problems—from cryptography and materials science to optimisation and machine learning. As corporations, research labs, and start‑ups invest heavily in quantum R&D, the demand for quantum computing specialists continues to grow. If you’re considering or preparing for a quantum computing job interview, you can expect a dynamic blend of theoretical and practical questions: spanning physics, mathematics, algorithm design, quantum software, and hardware constraints. In this blog post, we’ll take you through 30 real coding & system‑design questions you might encounter when interviewing for quantum computing roles. We’ll also explain the importance of targeted preparation and share tips on presenting your experience in this cutting‑edge field. For those currently seeking quantum opportunities in the UK, visit www.quantumcomputingjobs.co.uk—a job board dedicated to connecting quantum specialists with exciting positions at research hubs, start‑ups, and major tech companies. Let’s start by exploring why interview readiness is so essential in the challenging and often abstract domain of quantum computing.

Negotiating Your Quantum Computing Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Reflects the Cutting-Edge Nature of Quantum Tech in the UK Introduction Quantum computing stands at the forefront of technological revolution—holding the potential to transform fields ranging from cryptography and drug discovery to climate modelling and finance. As a mid‑senior professional in this evolving domain, your expertise could drive breakthrough algorithms, optimise quantum hardware performance, or steer complex research initiatives. Given the unprecedented possibilities this technology unlocks, top-tier talent is in high demand, and employers often craft job offers that extend well beyond a conventional salary. Yet, many quantum specialists focus primarily on base pay when evaluating a new role. While salary certainly matters, it’s only one component of a multi-faceted compensation package that may include equity, performance-based bonuses, and perks designed for the unique demands of quantum research. By understanding—and negotiating—these additional components, you can position yourself to reap both immediate and long-term rewards that accurately reflect your impact in this cutting-edge sector. This guide unpacks every critical aspect of negotiating a quantum computing job offer. From exploring equity schemes that tie your success to that of the company, to leveraging milestone-driven bonuses that recognise breakthroughs in quantum algorithms or hardware, you’ll learn how to confidently pursue an offer that acknowledges your high-value contributions and sets you on a trajectory for success in the UK’s rapidly maturing quantum ecosystem.

Quantum Computing Jobs in the Public Sector: Transforming Government, Defence, and Research

Quantum computing represents one of the most revolutionary technological frontiers of the 21st century, promising computational capabilities far beyond the reach of classical computers. By leveraging quantum mechanical phenomena such as superposition and entanglement, quantum computers can solve certain problems—like complex optimisation tasks or molecular simulations—exponentially faster. This paradigm shift is not only attracting attention from tech giants and research universities but also from the public sector, where breakthroughs can profoundly impact everything from national security to public healthcare and beyond. In the United Kingdom, government bodies, research councils, and defence agencies have been proactive in exploring quantum computing’s potential. The UK National Quantum Technologies Programme, significant investments from UK Research and Innovation (UKRI), and leading institutions like the National Cyber Security Centre (NCSC) are all advancing quantum technologies. As a result, quantum computing jobs within the public sector are on the rise, offering a unique blend of intellectual challenge, societal impact, and long-term career stability. In this comprehensive guide, we will delve into why quantum computing is crucial for government initiatives, explore the key public sector organisations driving adoption, outline the typical job roles, discuss the skills and qualifications needed, and provide practical advice on finding and securing a quantum computing position in the UK public sector. By the end, you’ll have a clear understanding of how you can leverage your expertise in quantum computing to shape the future of public services—contributing to national security, healthcare, climate modelling, and more.