PhD Studentship: Uncertainty quantification for machine learning models of chemical reactivity

University of Nottingham
united kingdom
3 weeks ago
Applications closed

Related Jobs

View all jobs

PhD Vacancy - Rydberg Quantum Sensing Technologies for Resilient Communications

Associate Quantum Engineer

Graduate Field Engineer

Senior Photonics Design Engineer

Associate Quantum Engineer

Research Fellow in Integrated THz Photonics

Closing Date
Monday 05 May 2025

Reference
SCI3039

In this PhD project, we will develop and implement approaches for estimating the uncertainty in AI predictions of chemical reactivity, to help strengthen the interaction between human chemists and machine learning algorithms and to assess when AI predictions are likely to be correct and when, for example, first principles quantum chemical calculations might be helpful.


Predicting chemical reactivity is, in general, a challenging problem and one for which there is relatively little data, because experimental chemistry takes time and is expensive. Within our research group, we have a highly automated workflow for high-level quantum chemical calculations and we have generated thousands of examples relating to the reactivity of molecules for a specific chemical reaction. This project will evaluate a variety of machine learning algorithms trained on these data and, most crucially, will develop and implement techniques for computing the uncertainty in the prediction.


The algorithms developed in the project will be implemented in our ai4green electronic lab notebook, which is available as a web-based application:ai4green.appand which is the focus of a major ongoing project supported by the Royal Academy of Engineering. The results of the project will help chemists to make molecules in a greener and more sustainable fashion, by identifying routes with fewer steps or routes involving more benign reagents.


Minimum Requirements:
Applicants should have, or be expected to achieve, at least a 2:1 Honours degree (or equivalent if from other countries) in Chemistry or Mathematics or a related subject. A MChem/MSc-4-year integrated Masters, a BSc + MSc or a BSc with substantial research experience will be highly advantageous. Experience in computer programming will be essential. The studentship is open to home students only.


The deadline for a formal application is 5th May. Start date: 1st Oct 2025. Annual tax-free stipend based on the UKRI rate (currently £20,780) plus fully-funded PhD tuition fees for the 3.5 years.


Supervisors:Jonathan Hirst (School of Chemistry), Simon Preston (Mathematical Sciences).


For further details and to arrange an interview please contact Jonathan Hirst (School of Chemistry).

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum Computing Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Quantum computing is at the forefront of disruptive innovation, promising exponential speed‑ups for certain classes of problems—from cryptography and materials science to optimisation and machine learning. As corporations, research labs, and start‑ups invest heavily in quantum R&D, the demand for quantum computing specialists continues to grow. If you’re considering or preparing for a quantum computing job interview, you can expect a dynamic blend of theoretical and practical questions: spanning physics, mathematics, algorithm design, quantum software, and hardware constraints. In this blog post, we’ll take you through 30 real coding & system‑design questions you might encounter when interviewing for quantum computing roles. We’ll also explain the importance of targeted preparation and share tips on presenting your experience in this cutting‑edge field. For those currently seeking quantum opportunities in the UK, visit www.quantumcomputingjobs.co.uk—a job board dedicated to connecting quantum specialists with exciting positions at research hubs, start‑ups, and major tech companies. Let’s start by exploring why interview readiness is so essential in the challenging and often abstract domain of quantum computing.

Negotiating Your Quantum Computing Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Reflects the Cutting-Edge Nature of Quantum Tech in the UK Introduction Quantum computing stands at the forefront of technological revolution—holding the potential to transform fields ranging from cryptography and drug discovery to climate modelling and finance. As a mid‑senior professional in this evolving domain, your expertise could drive breakthrough algorithms, optimise quantum hardware performance, or steer complex research initiatives. Given the unprecedented possibilities this technology unlocks, top-tier talent is in high demand, and employers often craft job offers that extend well beyond a conventional salary. Yet, many quantum specialists focus primarily on base pay when evaluating a new role. While salary certainly matters, it’s only one component of a multi-faceted compensation package that may include equity, performance-based bonuses, and perks designed for the unique demands of quantum research. By understanding—and negotiating—these additional components, you can position yourself to reap both immediate and long-term rewards that accurately reflect your impact in this cutting-edge sector. This guide unpacks every critical aspect of negotiating a quantum computing job offer. From exploring equity schemes that tie your success to that of the company, to leveraging milestone-driven bonuses that recognise breakthroughs in quantum algorithms or hardware, you’ll learn how to confidently pursue an offer that acknowledges your high-value contributions and sets you on a trajectory for success in the UK’s rapidly maturing quantum ecosystem.

Quantum Computing Jobs in the Public Sector: Transforming Government, Defence, and Research

Quantum computing represents one of the most revolutionary technological frontiers of the 21st century, promising computational capabilities far beyond the reach of classical computers. By leveraging quantum mechanical phenomena such as superposition and entanglement, quantum computers can solve certain problems—like complex optimisation tasks or molecular simulations—exponentially faster. This paradigm shift is not only attracting attention from tech giants and research universities but also from the public sector, where breakthroughs can profoundly impact everything from national security to public healthcare and beyond. In the United Kingdom, government bodies, research councils, and defence agencies have been proactive in exploring quantum computing’s potential. The UK National Quantum Technologies Programme, significant investments from UK Research and Innovation (UKRI), and leading institutions like the National Cyber Security Centre (NCSC) are all advancing quantum technologies. As a result, quantum computing jobs within the public sector are on the rise, offering a unique blend of intellectual challenge, societal impact, and long-term career stability. In this comprehensive guide, we will delve into why quantum computing is crucial for government initiatives, explore the key public sector organisations driving adoption, outline the typical job roles, discuss the skills and qualifications needed, and provide practical advice on finding and securing a quantum computing position in the UK public sector. By the end, you’ll have a clear understanding of how you can leverage your expertise in quantum computing to shape the future of public services—contributing to national security, healthcare, climate modelling, and more.