Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

PhD in Quantum Materials Physics and Machine Learning

University of Birmingham
West Midlands
7 months ago
Applications closed

Related Jobs

View all jobs

Principal, Product Marketing - Quantum Algorithms and Use Cases - 390

Scientific Project Manager - Quantum Computing

Laser Applications Team Leader

Trainee Patent Attorney – Quantum Sciences/Quantum Computing

Trainee Patent Attorney – Quantum Sciences/Quantum Computing

Quantum Technical Solutions Account Executive (Lead)

PhD in Quantum Materials Physics and Machine Learning

PhD Project Proposal: Quantum Materials Physics and Machine Learning

University of Birmingham | Supervisor: Prof. Andrew J. Morris

Overview:A competitively funded PhD UK studentship is available focusing on quantum mechanics to discover and understand novel materials for critical applications such as energy storage, solar, and carbon capture. The project will explore methods beyond traditional density-functional theory (DFT), leveraging cutting-edge techniques such as machine learning / artificial intelligence (AI) and/or correlated electron approaches (e.g. DMFT) to address limitations in accuracy and computational feasibility for complex or large-scale systems.

Background and Motivation:Challenges in materials science demand solutions that go beyond both existing materials and methods. While DFT has been the cornerstone of quantum mechanical materials calculations, its limitations hinder progress in studying complex systems, such as materials with strong electronic correlations or those with function over large length- or timescales. Addressing these challenges is key to understanding degradation in battery materials, designing efficient energy storage devices, and predicting the behaviour of emerging materials.

Recent advances in artificial intelligence, particularly the development of machine-learned interatomic potentials, have shown promise in extending the reach of computational structure prediction. These methods, pioneered by Andrew’s group, allow for the efficient exploration of crystalline and amorphous material structures, greatly accelerating the discovery process. We are also interested in using dynamical mean-field theory (DMFT) to study electronic correlations in materials with complex degradation mechanisms, such as advanced battery materials.

What the project looks like day-to-day:Some fractions of:

  1. Analytical techniques to develop the underlying algorithms/methods.
  2. Coding and scripting in e.g. C(++), Python, Julia, BASH.
  3. Utilizing regional and national high-performance computing facilities (both CPU and GPU-based) to conduct large-scale simulations efficiently.
  4. Working closely with experimental collaborators to validate computational predictions, ensuring relevance to real-world applications.

The project scope is quite flexible and can be tailored to the successful applicant's interests.

Candidate Profile:This project is ideal for candidates with a strong background in physics, materials science, or chemistry, and an interest in computational methods. Prior experience with quantum mechanics, ML, or high-performance computing is advantageous but not essential.

Application Process:Interested candidates are encouraged to contact Andrew at to discuss the project further and receive guidance on preparing a strong application.

Seniority level

  • Internship

Employment type

  • Full-time

Job function

  • Research, Analyst, and Information Technology
  • Industries: Higher Education

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum Computing Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK quantum computing hiring has shifted from credential‑first screening to capability‑driven evaluation. Employers now value provable contributions across the stack—algorithms & applications, compilation & optimisation, circuit synthesis, control & calibration, hardware characterisation, error mitigation/correction (QEM/QEC), verification/benchmarking, and hybrid HPC/quantum workflows—plus the ability to communicate trade‑offs, costs and feasibility to non‑quantum teams. This guide explains what’s changed, what to expect in interviews and how to prepare—especially for quantum algorithm engineers, quantum software/compilers, experimentalists, quantum control & firmware, cryo/readout engineers, quantum error correction researchers, verification/benchmarking specialists, and quantum‑adjacent product managers. Who this is for: Quantum algorithm/applications engineers, compiler/optimisation engineers, control/firmware engineers, experimental physicists & hardware engineers (superconducting, trapped ion, photonic, spin/neutral atom), cryogenics & RF/microwave, QEC researchers, verification/benchmarking specialists, quantum‑HPC orchestration engineers, and product/BD roles in the UK quantum ecosystem.

Why Quantum Computing Careers in the UK Are Becoming More Multidisciplinary

Quantum computing has long been considered an elite subfield of physics and computer science. But as quantum technologies advance—from fault-tolerant hardware to quantum algorithms and quantum cryptography—they’re moving closer to real applications in finance, materials simulation, optimisation, cryptography and more. As this transition happens, UK quantum computing careers are becoming increasingly multidisciplinary. Quantum systems are no longer just the domain of physicists and quantum software engineers. If quantum technologies are to be trusted, adopted and regulated, professionals must also incorporate expertise in law, ethics, psychology, linguistics & design. In practice, quantum computing projects now intersect with data governance, risk, human interaction, explainability and communication. In this article, we’ll explore why quantum computing careers in the UK are shifting to multidisciplinary roles, how these five supporting fields intersect with quantum work, and what job-seekers & employers should do to keep up in this evolving frontier.

Quantum Computing Team Structures Explained: Who Does What in a Modern Quantum Department

Quantum computing has shifted from lab curiosity to the next frontier of high-impact computing. Across the UK, universities, national labs, start-ups, and established tech and finance firms are building quantum teams to explore algorithms, design hardware, and deliver quantum-ready software. As momentum grows, so does the need for clear, robust team structures. Because quantum R&D spans physics, engineering, computer science, and product, ambiguity about who does what can slow progress, increase risk, and inflate costs. This guide maps the typical roles in a modern quantum computing department, how they collaborate across the research-to-product lifecycle, skills and backgrounds UK employers expect, indicative salary ranges, common pitfalls, and practical ways to structure teams that move fast without breaking science.