Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Postdoctoral Research Assistant in Modelling of Quantum Computing Control Systems

University of Oxford
Oxfordshire
1 month ago
Create job alert

We are seeking

a motivated and Talented experimentalist for a full-time Postdoctoral Research Assistant in Modelling of Quantum Computing Control Systems within Professor Ares’ and Professor O’Brien’s research groups at the Department of Engineering Science (Central Oxford). The post is fixed term for two years and is funded by the EPSRC. The development of large-scale quantum computers will require a deep understanding of the classical infrastructure that supports them, including analog control systems. As quantum devices scale toward the million-qubit regime, modeling these complex systems becomes essential. This project will focus on building a comprehensive digital twin of a future quantum computer to investigate how classical subsystems scale and interact, and how this scaling impacts the control and stability of quantum operations. Using advanced Multiphysics simulation tools, the researcher will create models of the physical and control architecture, enabling the identification of design bottlenecks and optimization strategies. The digital twin will serve as a testbed for evaluating engineering trade-offs and guiding future hardware development. The appointed researcher will collaborate with academic teams, industrial partners, and national laboratories, contributing to the broader QCI3 initiative aimed at advancing scalable and interconnected quantum computing technologies. Reporting to the Principal Investigator, you will help ensure a healthy and vibrant research environment within Natalia Ares’ and Dominic O’Brien research groups. You should possess a relevant PhD/DPhil (or be near completion). Excellent communication skills, including the ability to write for publication, present research proposals and results, and represent the research group at meetings is essential.

Related Jobs

View all jobs

Postdoctoral Research Assistant in Modelling of Quantum Computing Control Systems

Postdoctoral Research Assistant in Quantum Optical Control of Spin Defects

Postdoctoral Research Assistant in Quantum Technologies

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Quantum Computing Jobs: Careers That Don’t Exist Yet

Quantum computing has long been described as the next frontier in technology. Unlike classical computers, which process information in binary (0s and 1s), quantum computers use quantum bits—or qubits—that can exist in multiple states simultaneously. This allows them to perform certain calculations exponentially faster than today’s most powerful supercomputers. For now, quantum computing is still in its early stages. But progress is accelerating. Tech giants such as IBM, Google, and Microsoft are racing to build scalable quantum systems. Start-ups across the UK, including Oxford Quantum Circuits and Cambridge Quantum, are developing applications that could transform industries from finance to pharmaceuticals. The UK government has invested heavily in quantum technologies, with the National Quantum Strategy allocating billions to research and commercialisation. Universities are training a new generation of quantum scientists and engineers. Demand for quantum skills is already outpacing supply. Yet the real transformation is still to come. As quantum computing converges with AI, cyber security, biotechnology, and materials science, entirely new jobs will emerge—roles that don’t exist today but will be essential tomorrow. Many of the most important quantum computing jobs of the next two decades don’t exist yet. This article explores why new careers will appear, the future jobs likely to emerge, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Quantum Computing Jobs: The Best Months to Apply & Why

The UK's quantum computing sector has emerged as one of Europe's most intellectually challenging and strategically crucial technology markets, with roles spanning from junior quantum software engineers to principal quantum scientists and heads of quantum research. With quantum computing positions commanding salaries from £40,000 for graduate quantum engineers to £180,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this revolutionary and rapidly evolving field. Unlike traditional computing roles, quantum computing hiring follows distinct patterns influenced by quantum research cycles, government funding schedules, and quantum hardware development timelines. The sector's unique combination of advanced mathematics, quantum physics, and computational complexity creates predictable hiring windows that strategic professionals can leverage to advance their careers in building tomorrow's quantum systems. This comprehensive guide explores the optimal timing for quantum computing job applications in the UK, examining how national quantum strategies, academic research cycles, and quantum technology initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking quantum research team or miss the opportunity to develop the next generation of quantum algorithms and systems.

Pre-Employment Checks for Quantum Computing Jobs: DBS, References & Right-to-Work and more Explained

The quantum computing industry represents one of the most strategically important and rapidly evolving sectors in modern technology, with quantum professionals playing crucial roles in advancing scientific understanding, developing breakthrough technologies, and maintaining national technological competitiveness. As quantum computing transitions from academic research to commercial applications and national security implementations, pre-employment screening processes have become increasingly sophisticated and comprehensive. Quantum computing careers span diverse environments from university research laboratories and government quantum initiatives to commercial quantum startups and established technology companies developing quantum cloud services. Each sector brings unique screening requirements reflecting the strategic sensitivity of quantum technologies, the international nature of quantum research collaboration, and the critical importance of maintaining both research integrity and intellectual property protection. Understanding quantum computing pre-employment screening helps professionals navigate career opportunities effectively whilst enabling employers to identify candidates capable of contributing to quantum innovation whilst maintaining appropriate security standards, research ethics, and technical excellence. The screening processes examine not only technical quantum competencies but also research integrity, security clearance eligibility, and ability to work effectively across the interdisciplinary quantum ecosystem. This comprehensive guide examines the full spectrum of pre-employment screening practices across quantum computing careers, from basic right-to-work verification through enhanced security clearance processes, technical competency assessment, and industry-specific requirements. Whether pursuing opportunities in quantum algorithm development, quantum hardware engineering, quantum software development, or quantum research leadership, understanding these screening processes enables quantum professionals to prepare effectively and advance their careers successfully. The quantum computing sector's unique combination of cutting-edge research, commercial potential, and strategic importance creates screening requirements that reflect both the technical demands of quantum innovation and the security considerations of strategically sensitive technologies. These processes ultimately support the continued advancement of quantum computing by ensuring high professional standards and technical competence necessary for breakthrough quantum innovation and responsible quantum technology development.