Engineering perfect superconducting qubits

FindAPhD
Southampton
1 day ago
Create job alert
Supervisors

Dr Dikai Guan


Dr Bruce (Jun-Yu) Ou


Project Description

This project, within the EPSRC Centre for Doctoral Training in Quantum Technology Engineering at the University of Southampton (https://qte.ac.uk), carries a UKRI TechExpert enhanced annual stipend around £31k for UK students. While researching the project outlined below you will also receive substantial training in scientific, technical, and commercial skills.


Superconducting qubits power today’s quantum computers, yet their fragile performance is limited by tiny material flaws. This project engineers the atomic-scale microstructure of Josephson junctions—optimising grain orientation, stress, and interfaces—for longer-lived, reproducible qubits. Students will combine advanced thin-film growth, microscopy, and cryogenic testing to engineer “perfect” quantum hardware.


Superconducting qubits underpin today’s most advanced quantum computers, yet their performance is limited by material imperfections at the heart of their nonlinear element — the Josephson junction (JJ). Presently, most transmon qubits use Al/AlOx/Al junctions fabricated by double-angle shadow evaporation. While effective at the nanoscale, this approach faces critical challenges of qubit lifetime, inhomogeneous broadening from fabrication and precise interface control at the nanoscale. The UK National Quantum Strategy highlights materials and fabrication science as critical to achieving reproducible, manufacturable qubits. There is an urgent need to bring a materials-engineering approach — grain orientation, stress relaxation, micro-texture, interface bonding — to the superconducting JJ stack. This project aims to systematically engineer and optimise the multilayer materials microstructure of Josephson junctions for superconducting qubits, achieving low lifetime variation, controlled texture, reproducible critical current, and compatibility with scalable manufacturing processes.


Research objectives include:



  • Thin Film Nanostructure Control: Study Al, Nb, and NbN thin films; deposition rate, substrate temperature, and post-deposition annealing to tune grain size, orientation, nanoscale texture, and residual stress.
  • Barrier and Interface Engineering: Compare native thermal AlOx vs plasma vs Atomic Layer Deposition (ALD) Al₂O₃ and explore epitaxial oxide barriers; characterise interfacial bonding, stoichiometry, and roughness.
  • Device-Level Validation: Fabricate test JJ arrays, resonators, and transmons; correlate qubit metrics (T₁, T₂, Ic spread) with measured microstructure and interface chemistry.
  • Design Rules and Process Map: Build deposition–microstructure–performance correlations to guide reproducible, scalable JJ fabrication.

Entry Requirements

Undergraduate degree (at least UK 2:1 honours degree, or international equivalent).


Closing Date

31 July 2026. International applicants must apply before 31 March 2026.


Funding

See funding notes below.


How to Apply

Please apply via the online portal and select:



  • Programme type: Research
  • Academic year: 2026/27
  • Full time or part time
  • Faculty: Engineering and Physical Sciences

Search for programme PhD Quantum Tech Eng. Please add the name of the supervisor in section 2 of the application.


Applications should include

  • Your CV (resumé)
  • 2 academic references
  • Degree transcripts/ certificates to date
  • English language qualification (if applicable)

We are committed to promoting equality, diversity, and inclusivity and give full consideration to applicants seeking part-time study. The University of Southampton takes personal circumstances into account, has onsite childcare facilities, is committed to sustainability and has been awarded the Platinum EcoAward.


#J-18808-Ljbffr

Related Jobs

View all jobs

Quantum Physics open applications

Quantum Physics: Open Roles in Quantum Computing

Quantum Consultant

Quantum Consultant

Quantum Consultant

Engineering Manager, RF & Quantum Satellite Systems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Quantum Computing Jobs: What Universities Aren’t Teaching

Quantum computing stands at the frontier of technological innovation. Promising breakthroughs in areas as diverse as cryptography, materials discovery, optimisation and machine learning, quantum technologies are shifting from academic research to early commercial deployment. Governments, defence organisations, finance firms and tech innovators around the world — including in the UK — are investing heavily in quantum talent and capability. Yet despite this surge in interest and investment, employers consistently report a troubling trend: Many graduates with quantum computing qualifications are not prepared for real-world quantum computing jobs. This isn’t a reflection on students’ intelligence or effort. Rather, it reveals a persistent skills gap between what universities teach and what organisations actually need. In this article, we’ll explore that gap in depth — what universities do well, where programmes fall short, why the divide persists, what employers actually want, and how jobseekers can bridge that gap to build successful careers in quantum computing.

Quantum Computing Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Quantum computing is exciting. Headlines about qubits, quantum advantage and futuristic breakthroughs can make it seem like the preserve of physicists in high-tech labs. But for career switchers in their 30s, 40s or 50s in the UK, the truth is both broader and more practical: there are real job opportunities connected to quantum computing that don’t require you to come straight out of a PhD programme. This article gives you a grounded UK-focused reality check on quantum computing jobs, what roles genuinely exist, which ones are suited to career switchers, what skills employers actually hire for, how long retraining realistically takes and how to position your experience for success. Whether you’re coming from IT, engineering, project management, research support, operations, compliance or even sales & communications — there are ways to pivot into this fast-growing field if you approach it strategically.

How to Write a Quantum Job Ad That Attracts the Right People

Quantum computing is no longer confined to university labs and research papers. UK companies are now actively hiring quantum software engineers, physicists, hardware specialists, cryptographers and commercial leads as the sector moves closer to real-world deployment. But while demand for quantum talent is rising, many employers are struggling to attract the right candidates. Roles attract either underqualified applicants who see “quantum” as a buzzword, or highly academic researchers who are a poor fit for commercial environments. The problem often isn’t the candidate pool — it’s the job advert. Writing a strong quantum job ad requires a very different approach to traditional tech hiring. Quantum professionals are highly specialised, sceptical of hype and acutely aware when an employer doesn’t truly understand the field. In this guide, we’ll break down how to write a quantum job ad that attracts the right people, filters out the wrong ones and positions your organisation as a serious, credible player in the quantum ecosystem.